Frequency Domain Analysis of Sensor Data for Event Classification in Real-Time Robot Assisted Deburring

نویسندگان

  • Bobby K. Pappachan
  • Wahyu Caesarendra
  • Tegoeh Tjahjowidodo
  • Tomi WIjaya
چکیده

Process monitoring using indirect methods relies on the usage of sensors. Using sensors to acquire vital process related information also presents itself with the problem of big data management and analysis. Due to uncertainty in the frequency of events occurring, a higher sampling rate is often used in real-time monitoring applications to increase the chances of capturing and understanding all possible events related to the process. Advanced signal processing methods are used to further decipher meaningful information from the acquired data. In this research work, power spectrum density (PSD) of sensor data acquired at sampling rates between 40-51.2 kHz was calculated and the corelation between PSD and completed number of cycles/passes is presented. Here, the progress in number of cycles/passes is the event this research work intends to classify and the algorithm used to compute PSD is Welch's estimate method. A comparison between Welch's estimate method and statistical methods is also discussed. A clear co-relation was observed using Welch's estimate to classify the number of cycles/passes. The paper also succeeds in classifying vibration signal generated by the spindle from the vibration signal acquired during finishing process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement Assisted Robotic Edge Deburring of Aero engine Components

Aero engine components are often subjected to high stress levels and vibrations during operation. The mechanical integrity of these machined components may be compromised by the presence of burrs and sharp edges. Therefore the removal of burrs and the creation of rounded edges is necessary. To do this manually is time consuming and costly and may have potential quality issues. The application o...

متن کامل

Cad Directed Robotic Deburring

Robots prove advantageous for the deburring of machined parts because they are more repeatable than humans and suffer no fatigue. However, most deburring robots are programmed manually, requiring a large investment in programming time. At the National Bureau of Standards' Automated Manufacturing Research Facility, research is being conducted on techniques to automate robot programming. A techni...

متن کامل

Application of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation

Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...

متن کامل

Complex feature analysis of center of pressure signal for age-related subject classification

Purpose: The aim of this study was to characterize prolonged standing and its effect on postural control in elderly individuals in comparison to adults.Materials and Methods: The elderly individuals’ behavior during standing and how demanding such a task is for them, is still unknown. We recorded the center of pressure (COP) position of 12 elder and 15 young participants while they were standin...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017